Проточные батареи — почему за ними будущее

Изобретение проточных батарей — нового уникального источника хранения энергии, стало настоящим прорывом в промышленной отрасли. Почему их называют аккумуляторами будущего, где они применяются и чем лучше других накопителей энергии, мы подробно расскажем в данной статье.

Проточная батарея (аккумулятор) — что это такое и как работает

Проточная батарея (или проточная редокс-батарея) – тип гальванического элемента, в котором химическая энергия обеспечивается за счет двух химических компонентов, растворенных в жидкости, содержащейся в системе и разделенной мембраной.Проточные батареи - почему за ними будущее

Ионный обмен, сопровождающийся движением электрического тока, происходит через мембраны, в то время как обе жидкости циркулируют в собственном отдельном пространстве.  Напряжение элемента определяется химически через уравнение Нернста и в практических отраслях колеблются от 1 до 2,2 Вт.

Проточная батарея может использоваться как топливный элемент (где извлекается потраченное топливо и добавляется новое), или как перезаряжаемая батарея (где источник электрической энергии запускает регенерацию топлива).

Хотя она обладает такими техническими преимуществами над традиционными перезаряжаемыми батареями, как потенциально отделяемые баки для жидкости и почти безграничный срок службы, на данный момент разработки обладают сравнительно меньшей мощностью и требуют большего количества сложной электроники.
Энергетическая емкость зависит от объема электролита (количества жидкого электролита), а мощность – от площади поверхности электродов.

Принцип построения

Проточная батарея – перезаряжаемая топливная ячейка, где электролит содержит один или больше растворенных электропроводящих элементов, протекающих сквозь гальванический элемент, который напрямую преобразует химическую энергию в электричество (электропроводящие элементы – «элементы в растворе, которые могут участвовать в реакции электрода, или которые могут быть адсорбированы электродом»).

Резервный электролит располагается снаружи, как правило – в емкости, и, как правило, закачивается через элемент (или элементы) реактора, хотя известны и системы подачи самотеком. Проточные батареи могут быстро «перезаряжаться» путем замены жидкого электролита (наподобие заправки топливных баков для двигателей внутреннего сгорания), или синхронного восстановления затраченного материала для повторной подачи питания.

Другими словами, проточная батарея практически похожа на обычный гальванический элемент за исключением того, что ионный раствор (электролит) не сохраняется в элементе вокруг электродов. Чаще всего, ионный раствор хранится вне элемента и может подаваться туда для выработки электричества. Общий объем потенциально произведенной энергии зависит от размера емкостей для хранения.

Работа проточных батарей происходит по принципам, заложенным электрохимической технологией.

Типы батарей

Были разработаны различные типы проточных элементов (батарей), в том числе – редокс-батареи, гибридные и безмембранные. Фундаментальным отличием между стандартными батареями и проточными элементами является то, что энергия хранится не в материале электродов, как в стандартных батареях, а в электролите, как в проточных элементах.

Редокс-батареи

Редокс-элемент (окислительно-восстановительный элемент) – реверсивный элемент, где электрохимические компоненты растворены в электролите. Проточные редокс-батареи являются перезаряжаемыми (аккумуляторами). Так как они работают чаще по принципу переноса разнозаряженных электронов, чем диффузии в твердом теле или внедрения, они, скорее всего, могут называться топливными элементами, а не батареями. В промышленной практике топливные элементы – обычное дело, и, как правило, первичные элементы типа системы H2/O2, не требуются.

Еще одним примером реверсивного топливного элемента является составной регенеративный топливный элемент, используемый на аппарате «Helios Prototype» от НАСА. Европейская патентная организация классифицирует проточные редокс-элементы (H01M8/18C4) как подкласс регенеративных топливных элементов (H01M8/18). Примерами проточных редокс-элементов являются ванадиевая проточная батарея, полисульфидно-бромидная батарея (Regenesys) и урановая проточная батарея. Топливные редокс-элементы менее распространены в коммерческих масштабах, хотя предлагалось большое количество подобных систем.

Был продемонстрирован прототип полийодно-цинковой проточной батареи с плотностью 167 Вт*ч/л. Более старые бромидно-цинковые элементы достигают плотности в 70 Вт*ч/л. Для сравнения, литий-железо-фосфатные батареи накапливают 233 Вт*ч/л энергии.

Заявляется, что полийодно-цинковая батарея безопаснее, чем другие проточные батареи благодаря отсутствия кислотных электролитов, негорючесть и рабочий диапазон температур от -4 до 122F (от -20 до 50C), что убирает потребность во внешней охлаждающей схеме, которая бы дала лишнюю массу и заняла место. Нерешенной проблемой остается то, что цинк оседает на негативном электроде, пропитывая мембрану и уменьшая КПД.

Из-за роста дендритов цинка галоидно-цинковые батареи не могут работать при высокой плотности электрического тока (свыше 20 мА/см2), что, таким образом, ограничивает емкость энергии. Добавление спирта в электролит йодно-цинковой батареи частично помогает решить проблему.

При полной разрядке батареи обе емкости содержат одинаковый раствор электролита: смесь положительно заряженных ионов цинка (Zn2+) и отрицательно заряженных ионов йода, I- . При заряде одна из емкостей содержит еще один отрицательно заряженный ион йода – полийодид (I3-). Батарея производит энергию, закачивая жидкость из внешних емкостей в сечение канала батареи, где жидкости смешиваются. Внутри канала ионы цинка проходит через селективную мембрану и превращается в металлический цинк в отрицательной клемме сечения канала.

Чтобы увеличить энергетическую емкость йодно-цинковой проточной батареи, ионы бромида (Br-) используются в качестве комплексообразующего агента для стабилизации свободного йода, формируя ионы бромистого йода (I2Br-) для освобождения ионов йода для хранения заряда.

Стандартные химикаты проточной батареи обладают как низкой удельной энергией (которая делает их слишком тяжелыми для полноразмерных электромобилей), так и малой удельной мощностью (которая делает ее слишком дорогой для стационарного накопления энергии). Однако была продемонстрирована высокая мощность (в 1,4 В/см2) для бромо-водородных проточных батарей, а броматно-водородные проточные батареи показали удельную энергию в 530 Вт*ч/кг на уровне емкости.

Одна из систем использует органические полимеры и солевой раствор с целлюлозной мембраной. Прототип был способен выдержать 10 000 циклов зарядки при сохранении значительной доли емкости. Плотность энергии составляла 10 Вт*ч/л. Плотность тока достигала 100 мА/см2.

Гибридные батареи

Гибридная проточная батарея использует один и более электропроводящих компонентов, оседающих как твердый слой. В этом случае гальванический элемент содержит один электрод батареи и один электрод топливного элемента. Этот тип ограничен в производстве энергии из-за площади поверхности электрода. Среди гибридных батарей – цинк-бромные, цинк-цериевые и свинцово-кислые проточные батареи.

Безмембранные батареи

Безмембранные батареи основаны на принципе ламинарного потока, где две жидкости перекачиваются через канал. Они проходят через электрохимические реакции для хранения и высвобождения энергии. Растворы перетекают параллельно и немного смешивается. Поток легко разделяет жидкости, устраняя потребность в мембране.

Мембраны часто – самый дорогостоящий и ненадежный компонент батарей, так как они могут ржаветь при повторном воздействии определенных реагентов. Отсутствие мембран позволяет использовать раствор жидкого брома и водорода. Это сочетание проблематично при использовании мембран, потому что они образуют бромистоводородную кислоту, которая может разрушить мембрану. Оба материала доступно по низкой цене.

Концепт использует маленький канал между двумя электродами. Жидкий бром перетекает через канал над графитовым катодом, а бромистоводородная кислота – под пористым анодом. В то же время газообразный водород протекает через анод. Химическая реакция может быть обращена для перезарядки батареи – новация для безмебранных батарей. Одна из таких безмембранных проточных батарей была продемонстрирована в августе 2013 года. Ее максимальная емкость энергии составляет 7950 Вт/м2 — в три раза больше, чем у других безмембранных систем – а ее размеры — гораздо больше, чем у ионно-литиевых батарей.

Компания «Primus Power» разработала запатентованную технологию для своей цинк-бромной проточной батареи – типа проточной редокс-батареи, для устранения потребности в мембране или сепараторе, что уменьшает цену и количество ошибок. Безмембранная проточная редокс-батарея от этой компании работает в сооружениях США и Азии, а появление изделия второго поколения обещалось на 21 февраля 2017 года.

Органические батареи

По сравнению с традиционными водными неорганическими проточными редокс-батареями, как-то ванадиевые или бромисто-цинковые, которые были разработаны десятки лет назад, органические проточные редокс-батареи появились в 2009 году и подавали большие надежды в плане уменьшения главных недостатков, предотвращающих экономическое и экстенсивное сворачивание разработок традиционных неорганических проточных редокс-батарей. Главной заслугой органических проточных редокс-батарей являются изменяемые окислительно-восстановительные свойства редокс-активных компонентов.

В дальнейшем органические проточные редокс-батареи можно разделить на две категории: Водные Органические Проточные Редокс-Батареи (ВОПРБ) и Неводные Органические Проточные Редокс-Батареи (НВОПРБ).

ВОПРБ используют воду в качестве электролита, а НВОПРБ используют органические растворители для растворения редокс-активных материалов.

В зависимости от использования одного или двух органически редокс-активных материалов в качестве анода и/или катода, ВОПРБ и НВОПРБ можно разделить на исключительно органические системы и гибридные органические системы, использующие неорганические материалы в качестве анода или катода. Экспериментальная версия ВОПРБ произошла раньше, чем НВОПРБ.

В случае накопления энергии в промышленных масштабах, ВОПРБ обладает потенциалом куда большим, чем НВОПРБ, так как первые – дешевле, лучшие эксплуатационные характеристики и производительность, а также – преимущества водных электролитов в области безопасности над неводными.

НВОПРБ могут быть применены в ограниченных специальных отраслях за счет более высокой плотности энергии по сравнению с ВОПРБ, несмотря на большее количество проблем безопасности, стоимость органических растворителей, вызванные радикалами побочные реакции, смешение электролитов и ограниченный срок службы. Данные ниже демонстрируют, в основном, особенности ВОПРБ.

Основой некоторых ВОПРБ являются хиноны. В одном исследовании в качестве катодов использовались 1,2-дигидробензохинон-3,5-дисульфокислота и 1,4- дигидробензохинон-2-дисульфокислота, а анолитом в кислотном ВОПРБ служило соединение Pb/PbSO4.

Первые ВОПРБ были гибридными системами, так как они используют органические редокс-активные материалы только для катода. Хиноны принимают две единицы электрического заряда, в сравнении с одной в традиционном католите, что подразумевает, что такая батарея может хранить в два раза больше энергии при аналогичном объеме.

9,10-антрихинон-2,7-дисульфокислота, как и хинон, также была оценена по достоинству. Это соединение подвергается быстрому обратимому восстановлению двух электронов/двух протонов в электроде из стеклоуглерода, погруженного в серную кислоту.

Водная проточная батарея с недорогими углеродными электродами, сочетающая хиноновую/гидрохиноновую пару с окислительно-восстановительную пару Br2/Br- , вырабатывают пиковую гальваническую удельную мощность свыше 6 000 Вт/м2 при 13 000 А/м2. Циклирование показывает сохранение емкости за цикл на уровне свыше 99 %. Удельная энергия за единицу объема достигала 20 Вт*ч/л. Антрахинон-2-дисульфокислота и антразинон-2,6-дисульфокислота на отрицательном полюсе и 1,2-дигидробензохинон-3,5-дисульфокислота на положительном полюсе предотвращают образование опасного брома.

Несмотря на отсутствие опубликованной официальной информации, заявлялось о том, что батарея после тысячи циклов не показала тенденции к ухудшению свойств. Несмотря на то, что эта целиком органическая система оказалась громоздкой, она обладает небольшим напряжением элемента (около 0,55 В) и малой плотностью энергию (менее 4 Вт*ч/л.).

Бромистоводородная кислота, используемая в качестве электролита, была замещена гораздо менее токсичным щелочным раствором (1 моль/литр гидроксида калия) и ферроцианидом. Более высокий pH дает меньшую коррозию, что позволяет использовать недорогие полимерные емкости. Увеличившееся электрическое сопротивление в мембране компенсируется ростом напряжения.

Напряжение элемента составило 1,2 В. КПД элемента превышает 99 %, в то время как цикличный КПД равен 84 %. Батарея обладает ожидаемым сроком службы, как минимум, в 1 000 циклов. Теоретическая плотность энергии составила 19 Вт*ч/л. Химическая стабильность ферроцианидов в растворе гидроксида калия с высоким pH без формирования гидроксида железа (II) и гидкросида железа (III) должна быть проверена, прежде чем пойти в промышленность.

Другая органическая ВОПРБ показала работу параквата в качестве анолита, а 4-гидрокси-2,2,6,6-тетраметилпиперидин-1-оксил – в качестве католита, а также – соль и дешевая мембрана обмена анионов для обеспечения заряда и разряда. Эта система класса «MV/TEMPO» обладает наибольшим напряжением элемента (1,25 В) и, возможно, наименьшими капитальными затратами (180 долларов/кВт*ч) для класса ВОПРБ.

Жидкие электролиты на водной основе были разработаны как случайная замена для нынешних систем без замены существующей инфраструктуры. Тестовая 600-мВ батарея была способна работать после 100 циклов с КПД около 100 %, плотность тока достигает 20-100 мА/см2, а оптимальная характеристика оценивается на уровне 40-50 мА, что позволяет сохранить примерно 70 % изначального напряжения батареи.

Важность исследований состоит в том, что нейтральные ВОПРБ будут гораздо безопаснее для окружающей среды, чем кислотные или щелочные аналоги, хотя они показывают электрохимические свойства, сравнимые с коррозийными кислотными или щелочными ПРБ.

ВОПРБ типа «MV/TEMPO» обладают плотностью энергии 8,4 Вт*ч/л с ограничением на полюсе «TEMPO». Следующий шаг – определение высшей емкости католита, подходящей для «MV» (растворимость в воде – примерно 3,5 М/л, 93,8 А*ч/л).

Один из концептов проточной батареи основан на редокс-активных органических полимерах, использующих паракват и TEMPO с диализными мембранами. Полимерная проточная редокс-батарея (ППРБ) использует функционализированные макромолекулы (схожие с органическим стеклом или пенопластом), растворенные в воде, выступающей в качестве активной среды и для анода, и для катода.

Таким образом, металлы и сильно коррозионные электролиты – типа солей ванадия в серной кислоте – уже не используются, и можно использовать простые диализные мембраны. Мембрана, разделяющая катод и анод в проточной ячейке, работает как фильтр и гораздо проще и дешевле в производстве, чем обычные ионоселективные мембраны. Она сохраняет крупные полимерные «спагетти-подобные» молекулы, хоть и позволяет пройти мелким противоионам.

Концепт может решить проблему дороговизны стандартной мембраны на основе полифторэтилена с боковыми сульфогруппами, но разработка и синтез редокс-активных полимеров с высокой растворимостью в воде – нестандартная задача.

Металлогидридные батареи

Протонные проточные батареи (ППБ) включает топливный элемент, состоящий из металлогидридного накопительного электрода в реверсивной мембране протонного обмена. Во время зарядки, ППБ сочетает ионы водорода, произведенные после разложения воды, с электронами и частицами метала в одном электроде топливного элемента. Энергия хранится в форме твердого металлогидрида. Разрядка производит электричество и воду, когда процесс обращается вспять, а протоны сочетаются с кислородом из окружающей среды. Могут применяться металлы, гораздо более дешевые, чем литий, и обеспечивать большую плотность энергии в сравнении с литиевыми элементами.

Батареи с сетью наночастиц

Серно-литиевая система, которая была смонтирована в сеть наночастиц, устраняет потребность в том, чтобы заряд двигался к частицам и от них, которые находятся в прямом производстве с проводящей пластиной. Вместо этого сеть наночастиц позволяет электричеству протекать сквозь жидкость. Это позволяет извлекать больше энергии.

Полутвердые батареи

В полутвердых проточных батареях, аноды и катоды состоят из частиц, подвешенных в жидкости-носителя. Суспензии для положительных и отрицательных полюсов хранятся в отдельных емкостях и перекачиваются по отдельным трубопроводам в ряд смежных реакционных камер, где они разделяются барьером типа тонкой пористой мембраны. Подход сочетает основную структуру проточных батарей на водной основе, использующих электродный материал, подвешенный в жидком электролите, с химией ионно-литиевых батарей с безуглеродными суспензиями и жидкими растворами с проводящей углеродной сетью. Безуглеродной полутвердой проточной редокс-батареей также иногда называется проточная редокс-батарея с твердой суспензией. Растворение материала сильно меняет ее химический процесс. Однако, взвешенные частицы твердого материала сохраняют характеристики твердого тела. В результате появляется вязкая суспензия, текущая как меласса.

Преимущества и недостатки

Проточные редокс-батреи и менее распространенные гибридные проточные батареи обладают преимуществами в плане гибкости компоновки (благодаря разделению активных составляющих), длительности срока службы (так как там не происходит фазовых переходов их твердого состояния в твердое), скорости времени отклика, отсутствия потребности в «уравнивании» заряда (перезарядка батареи для обеспечения равным зарядом всех элементов) и отсутствия вредных выбросов. Некоторые типы также предлагают легкое изменение заряда (через зависимость напряжения от заряда), низкую стоимость обслуживания и допуск перезарядки и переразряду. В сравнении с твердыми перезаряжаемыми батареями типа ионно-литиевых, проточные редокс-батареи, а также – их аналоги на водной основе, в частности, могут работать при больших напряжении и плотности энергии. Эти технические достоинства делают проточные редокс-батареи отличным вариантом для хранения энергии в промышленных масштабах.

Проточные батареи - почему за ними будущееВ качестве недостатка выступает плотность энергии, которая, хоть и сильно отличается, но все же ниже, чем у портативных батарей типа ионно-литиевых.

Также в сравнении с нереверсивными топливными элементами или электролизерами, использующими простые электролитические соединения, проточные батареи, в основном, обладают несколько меньшим КПД.

Развитие и экономия, идущая от лабораторий к промышленным предприятиям, продолжается и сегодня. Стоимость компонентов – один из важных аспектов этого процесса. В лаборатории было продемонстрировано серно-кислородно-солевое соединение.

Отрасли применения

Проточные батареи в большинстве случаев нужны для относительно крупных (1 кВт*ч – 10 МВт*ч) стационарных сооружений. Здесь присутствуют следующие отрасли:

  1. Выравнивание нагрузки, где батарея, соединенная с электрической сетью, накапливает избыточное электричество во внепиковые периоды и высвобождает его в периоды пиковой потребности. Общая проблема, которая ограничивает использование большинства химических веществ в проточных батареях – их низкая площадная мощность (рабочая плотность тока), которая приводит к высокой стоимости энергии;
  2. Хранение энергии из возобновляемых источников типа ветряной или солнечной для разрядки во время периодов пиковой потребности;
  3. Ограничение пика нагрузки, где его удовлетворяет батарея;
  4. Бесперебойное питание, где батарея используется в случае, если главный источник энергии не может обеспечить ее непрерывную подачу;
  5. Преобразование энергии, так как все элементы содержат один и тот же электролит(ы). Следовательно, электролит(ы) могут быть заряжены с использованием определенного числа элементов и разряжаться с его изменением. Так как напряжение батареи пропорционально количеству используемых в батарее элементов, следовательно, она может быть крайне мощным преобразователем постоянного тока. К тому же, если постоянно изменяется число элементов (на стороне входа и/или стороне выхода), также может происходить преобразование переменного тока в постоянный, переменного тока или постоянного тока в переменный с частотой, ограниченной коммутационным оборудованием;
  6. Электромобили – так как проточные батареи можно быстро перезарядить, заменив электролит, они могут использоваться там, где транспорту требуется взять энергию так же быстро, как и транспорту с ДВС. Обшей проблемой, связанной с большинством химикатов в ПРБ при применении их в электромобилях – низкая плотность энергии, что приводит к короткому запасу хода. Проточные батареи на основе высокорастворимых галогенатов являются исключением, достойным внимания.
  7. Автономные электростанции – Примером такого применения являются автоматические телефонные станции, где не требуется электросеть. Батарея может использоваться вместе с солнечными или ветряными источниками энергии для компенсации колебаний уровня мощности или вместе с генераторами для максимального увеличения КПД и сохранения топлива. На данный момент, проточные батареи используются в солнечных микрогридах по всем Карибским островам.
Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5 (4 оценок, среднее: 5,00 из 5)
Загрузка...
Понравилась статья? Поделиться с друзьями:
«Проагрегат»